Influence of H_2O , CO_2 and various combustible gases on the characteristics of a limiting current-type oxygen sensor

KEIICHI SAJI, HARUYOSHI KONDO, HIDEAKI TAKAHASHI, TAKASHI TAKEUCHI, ISEMI IGARASHI

Toyota Central Research and Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken, 480-11, Japan

Received 4 January 1988; revised 11 April 1988

Current-voltage characteristics of limiting current-type oxygen sensors were investigated. The sensor showed a two-stage current plateau in current-voltage characteristics in $H_2O-O_2-N_2$ and $CO_2-O_2-N_2$ mixtures. The sensor current in the first stage corresponded to O_2 concentration and was practically independent of H_2O and CO_2 concentration in the gas mixtures. The sensor current in the second stage increased linearly with the H_2O or CO_2 concentration, for a sensor with high electrode activity. The behavior of the sensor suggests that the deoxidization of H_2O or CO_2 occurs at the sensor cathode. For nonequilibrium gas mixtures containing combustible gas and O_2 , the sensor current in the first stage decreased linearly with combustible gas concentration. The decrease of the sensor current differed from that corresponding to the O_2 concentration consumed by the reaction of these gases in the ambient gas, depending on the kind of combustible gas. The reduction of the sensor current is explained by a model assuming that the reaction of these gases occurs at the cathode, and the diffusion of the combustible gas in the porous coating is a rate-limiting step.

1. Introduction

Recently, limiting current-type oxygen sensors have attracted much interest in the automobile industry. The sensor is used for detecting oxygen concentration in the exhaust gas of a lean combustion engine system, which is capable of improving fuel efficiency and of reducing pollutant emissions of automobiles [1, 2]. The senor utilizes limiting current characteristics that appear in a zirconia oxygen pumping cell with a diffusion barrier covering the cathode of the cell [3-5]. The limting current of the sensor is determined by gaseous diffusion of oxygen in the diffusion barrier. Therefore, the sensor shows a linear output current with respect to O_2 concentration. For the sensor with a porous coating as the diffusion barrier, a very weak temperature dependence and a fast response of the sensor output were achieved [4]. These characteristics are suited for the precise control of air-to-fuel ratio over a lean range in the combustion system.

In the sensor with the porous coating, limiting current, I_1 , is given by

$$I_{1} = \frac{4FD_{O_{2}}S}{l}C_{O_{2}}$$
(1)

where F is the Faraday constant, D_{O_2} is the diffusion coefficient of O_2 within the porous coating, S and l are the area of the cathode and the thickness of the coating, respectively, and C_{O_2} is O_2 concentration in the ambient gas of the sensor.

0021-891X/88 \$03.00 + .12 © 1988 Chapman and Hall Ltd.

Although the sensor is based on oxygen pumping, the sensor output depends on other gas species, such as H_2O , CO_2 and combustible gas. The effects of these gases on the sensor output have been reported by several authors [3, 6-8]. Dietz [3] observed a sensor output corresponding to equilibrated O2 concentration for CO and O₂ mixtures. He reported limiting current due to the reduction of H_2O and CO_2 also. The influence of gas composition on the sensor output should be taken into account when the sensor is used in combustion exhaust gas, since it contains H₂O, CO_2 , and various combustible gases in addition to O_2 and N₂. The present paper reports detailed experimental and analytical results on the influence of H₂O, CO2 and various combustible gases on the sensor output.

2. Experimental details

The construction of the sensor used in experiments is shown in Fig. 1. The sensor element was made of an $8 \mod \% Y_2O_3$ -stabilized ZrO₂ electrolyte disk with sputtered platinum electrodes. These were covered with a porous spinel coating whose porosity was approximately 9%. The diameter of the element was 3 mm, and the thickness of the electrodes and the porous coating on the cathode side were approximately 1 μ m and 600 μ m, respectively. The element was heated up to a constant temperature of several hundred °C by a small heater. The current-voltage characteristics of the sensor were examined in H₂O-

Fig. 1. Schematic sectional structure of the sensor.

 $O_2\text{-}N_2,\ CO_2\text{-}O_2\text{-}N_2$ and combustible gas- $O_2\text{-}N_2$ mixtures.

3. Results and discussion

3.1. Limiting current due to the decomposition of H_2 and CO_2

The sensor showed two-stage saturation current characteristics in $H_2O-O_2-N_2$ mixtures at a temperature of 720°C, as shown in Fig. 2. In the first stage, the magnitude of the limiting current corresponds to O_2 concentration in the gas mixtures, and is practically independent of the presence of H_2O . On the other hand, the sensor current in the second stage increases linearly with H_2O concentration.

The effects of H_2O on the sensor characteristics may be caused by the variation in the diffusion coefficient of O_2 in the porous coating and by the formation of O_2 due to the decomposition of H_2O in the cathode. However, it is seen in Fig. 2 that the former effect is not significant, since the sensor current in the first stage is not varied by H_2O concentration. For the latter, if the formation of O_2 from H_2O is very fast, H_2O concentration at the cathode becomes much lower than that in the ambient gas owing to the limit-

Fig. 2. Current–voltage characteristics of the sensor in $H_2O\text{-}O_2\text{-}N_2$ mixtures at 720° C.

Fig. 3. Comparison of current-voltage curve between calculated and experimental results shown in Fig. 2 for $H_2O-O_2-N_2$ mixtures at 720° C. Sensor current is normalized by the magnitude of limiting current due to O_2 , and the resistance of the sensor is assumed to be 290 ohm.

ing effect of the porous coating. Consequently, the decomposition rate of H_2O is determined by H_2O diffusion in the porous coating. In this case, limiting current, I_{1,H_2O} , due to the decomposed oxygen will be given by

$$I_{\rm l, H_2O} = \frac{2FD_{\rm H_2O}S}{l} C_{\rm H_2O}$$
(2)

In Equation 2, $D_{\rm H_2O}$ is the diffusion coefficient of H₂O in the porous coating, and $C_{\rm H_2O}$ is H₂O concentration in the ambient gas of the sensor. This linear relationship between $I_{\rm l, H_2O}$ and $C_{\rm H_2O}$ can be seen in the second stage of the current-voltage characteristics shown in Fig. 2.

On the other hand, the relationship between sensor voltage, V, and current, I, is written as

$$V = IR_{\rm b} + \frac{RT}{4F} \ln \frac{C_{\rm O_2}}{C_{\rm O_2,c}}$$
(3)

where $R_{\rm b}$ is the resistance of the electrolyte, and $C_{\rm O_2,c}$ is O_2 concentration at the cathode. In Equation 3, $C_{O_2,c}$ can be regarded as the equilibrium O_2 concentration of the reaction, $H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$, at the cathode when the reaction occurs very rapidly. From these relationships, the current-voltage characteristics were numerically calculated, as described in the Appendix. In the calculation, $R_{\rm b}$ and the magnitude of limiting current for O₂ were fitted to experimental results, and the relationship for Knudsen diffusion $D_{\rm H_2}/D_{\rm O_2} \sim$ $\sqrt{M_{\rm O_2}/M_{\rm H_2O}}$ is assumed, where $M_{\rm O_2}$ and $M_{\rm H_2O}$ are the molecular weights of O₂ and H₂O, respectively. The experimental results shown in Fig. 2 are compared with calculated results in Fig. 3. In the comparison, sensor current is normalized with respect to the magnitude of limiting current due to O₂ diffusion. The comparison indicates that the magnitude of the calculated sensor current in the second stage is somewhat larger than the experimental results. This discrepancy may be caused by insufficient gas permeability of the cathode. However, as can be seen in Fig. 3, the cal-

Fig. 4. Current–voltage characteristics of the sensor in $\rm CO_2-O_2-N_2$ mixtures at 720° C.

culated onset of sensor current due to the decomposition of H_2O is in good agreement with the experimental results, where the calculated onset voltage is approximately 0.68 V* at 720°C for a 5% O_2 -10% H_2O-N_2 mixture. This agreement suggests that H_2O readily decomposes at the cathode.

For CO₂-O₂-N₂ mixtures, the second stage current was also observed. Figures 4 and 5 are the results for the different sensors having previously been operated at 800° C and at 720° C for ~ 10 h, respectively. If CO₂ is decomposed by the reaction CO₂ \rightarrow CO + $\frac{1}{2}$ O₂, the magnitude of the limiting current, I_{1,CO_2} , may be expressed, similarly to Equation 2, as

$$I_{l, CO_2} = \frac{2FD_{CO_2}S}{l}C_{CO_2}$$
(4)

where D_{CO_2} is the diffusion coefficient of CO₂ in the porous coating, and C_{CO_2} is CO₂ concentration in the ambient gas. The experimental sensor current in the second stage shown in Fig. 4 is, however, nonlinear with CO₂ concentration. On the other hand, the second stage current shown in Fig. 5 is approximately linear with CO_2 concentration. This difference in the second stage current is considered to be caused by the previous operation of the former sensor at a high temperature of 800° C. Therefore, the difference in the characteristics for CO2 suggests the variation of electrode activity for the decomposition of CO2. The variation of the electrode activity may be ascribed to morphological changes at high temperatures above 800° C, which were observed by Pizzini et al. [9]. However, in the case of the sensor showing the linear relationship with CO₂, the magnitude of sensor current in the second stage is somewhat lower than that given by Equation 4, as can be seen in Fig. 6. Moreover, in this figure, it can also be seen that the experimental onset voltage of the second stage is considerably greater than the calculated magnitude of 0.75 V*

Fig. 5. Current-voltage characteristics of a sensor with a high electrode activity, in $CO_2-O_2-N_2$ mixtures at 720° C.

at 720° C for a 5% O_2 -10% CO_2 -N₂ mixture. From the difference in the onset voltage of the second stage current between the experimental results shown in Figs 3 and 6, it is suggested that CO_2 is not as easily decomposed as H₂O. Therefore, the decomposition rate of CO_2 in this case is considered to be affected not only by gaseous diffusion, but also by the activity of the cathode, particularly in the case of the results shown in Fig. 4.

3.2. The influence of combustible gas on sensor output

Figures 7–9 show experimental results measured at 720°C in $H_2-O_2-N_2$, CO– O_2-N_2 and $iC_4H_{10}-O_2-N_2$ mixtures with combustible gas concentration as a parameter. The results indicate that the magnitude of the limiting current decreases linearly with increasing combustible gas concentration. To explain the decrease in sensor current, the following two cases were examined.

Fig. 6. Comparison of current-voltage curve between calculated and experimental results shown in Fig. 5 for $CO_2-O_2-N_2$ mixture at 720° C. Sensor current is normalized by the magnitude of limiting current due to O_2 , and the resistance of the sensor is assumed to be 380 ohm.

^{*} The onset voltage is defined by the overvoltage at which the sensor current increases by 1% of the magnitude of the limiting current for O_2 . The overvoltage is given by the second term in the right-hand side of Equation 3.

Fig. 7. Effect of H_2 in H_2 -2% O_2 -N₂ mixtures on the current-voltage characteristics of the sensor at 720° C.

Case I: when combustible gas fully reacts with O_2 before reaching the sensor surface, the limiting current will be decreased by an amount corresponding to the reacted O_2 concentration. In the reaction, if the stoichiometric mole ratio of O_2 against the combustible gas is assumed to be *n*, the magnitude of the limiting current will be given by

$$I_{1} = \frac{4FD_{O_{2}}S}{l}(C_{O_{2}} - nC_{x})$$
(5)

where C_x is the combustible gas concentration in the gas mixture.

Case II: it is assumed that combustible gas reacts readily with O_2 at the cathode, not in other places, due to the catalytic activity of the cathode. In this situation, the combustible gas concentration at the cathode is much lower than in the ambient gas and, consequently, the diffusion of the combustible gas in the porous coating can be regarded as being rate determining. In this case, the diffusion rates of these gases are given by

Fig. 8. Effect of CO in CO-2% O_2 -N₂ mixtures on the current-voltage characteristics of the sensor at 720° C.

Fig. 9. Effect of iC_4H_{10} in $iC_4H_{10}-2\% O_2-N_2$ mixtures on the current-voltage characteristics of the sensor at 720°C.

and

$$J_{\rm x} = \frac{D_{\rm x}S}{l}C_{\rm x} \tag{7}$$

where J_{O_2} and J_x are the diffusion rates of O_2 and the combustible gas, respectively, and D_x is the diffusion coefficient of the combustible gas in the porous coating. On the assumption that the transferred O_2 flux J_{O_2} is consumed by the combustible gas flux J_x , the limiting current is expressed as

$$I_{1} = 4F(J_{O_{2}} - nJ_{x})$$
$$= \frac{4FD_{O_{2}}S}{l} \left(C_{O_{2}} - \frac{nD_{x}}{D_{O_{2}}}C_{x}\right)$$
(8)

This equation indicates that the decrease in the limiting current is D_x/D_{O_2} times as much as that for case I. Accordingly, we introduce normalized current reduction, γ , which is defined as the ratio of the decrease in limiting current to that in case I. Then,

$$\gamma = D_{\rm x}/D_{\rm O_2} \tag{9}$$

In Equation 9, the value of γ is estimated to be 4 for H₂, 1.07 for CO and 0.74 for iC₄H₁₀, for the case of Knudsen diffusion in the porous coating.

The predicted current reduction is compared with the experimental results in terms of γ_{exp} , which is the ratio of the experimental current reduction normalized with that for case I. The temperature variation of γ_{exp} is shown in Fig. 10. This figure shows that the value of γ_{exp} for iC₄H₁₀ is in good agreement with case II. However, γ_{exp} for H₂ has a value intermediate between the two cases, and varies with temperature. This indicates that the reaction of H₂ with O₂ occurs both in the cathode and in the gas mixture before reaching the sensor surface. The value of γ_{exp} for CO is slightly larger than 1 and, therefore, case II would be plausible.

5. Conclusions

In gas mixtures containing H_2O or CO_2 , in addition to O_2 and N_2 , the limiting current-type oxygen sensor

Fig. 10. Variation of normalized current reduction with temperature.

shows a two-stage current plateau. The magnitude of the sensor current in the first stage corresponds to oxygen concentration in the gas mixture, and is practically independent of the presence of H_2O and CO_2 . The sensor current in the second stage increases with increasing H_2O or CO_2 concentration. The second stage characteristics are considered to originate from the diffusion of these gases as a rate-limiting step in the porous coating.

For gas mixtures containing combustible gas and O_2 , the limiting current corresponding to O_2 concentration decreases linearly with increase in combustible gas concentration. The decrease in limiting current is predicted by a model including both the reaction of these gases at the cathode and in the gas mixtures before reaching the sensor surface. In the model, the diffusion of the combustible gas in the porous coating is rate limiting.

References

- S. Matsushita, T. Inoue, K. Nakanishi, K. Kato and N. Kobayashi, SAE Paper 850044, SAE International Congress and Exposition, Detroit, Michigan, 25 Feb.-1 March 1985.
- [2] Y. Kimbara, K. Shinoda, H. Koide and N. Kobayashi, SAE Paper 851210, SAE Government/Industry Meeting and Exposition, Washington, DC, 20-23 May 1985.
- [3] H. Dietz, Solit State Ionics 6 (1982) 175.
- [4] K. Saji, H. Takahashi, H. Kondo, T. Takeuchi and I. Igarashi, 'Proceedings of the 4th Sensor Symposium', Institute of Electrical Engineers of Japan, Tokyo (1984) p. 147.
- [5] K. Saji, J. Electrochem. Soc. 134 (1987) 2430.
- [6] K. Saji, H. Kondo, H. Takahashi, T. Takeuchi and I. Igarashi, 'Digest of Technical Papers' Presented at the 3rd International Conference on Solid-State Sensors and Actuators, Philadelphia, Pennsylvania, 11-14 June (1985) p. 336.
- [7] H. Takahashi, K. Saji, H. Kondo, T. Takeuchi and I. Igarashi, 'Proceedings of the 5th Sensor Symposium', Institute of Electrical Engineers of Japan, Tokyo (1985) p. 133.
- [8] T. Usui, A. Asada and Y. Isono, 'Proceedings of the the 6th Sensor Symposium', Institute of Electrical Engineers of Japan, Tokyo (1986) p. 279.
- [9] S. Pizzini, M. Bianchi, P. Colombo and S. Torchio, J. Appl. Electrochem. 3 (1973) 153.

Appendix

The sensor current, I, is considered as the sum of current components caused by O_2 molecules and dissociated oxygen from H_2O and CO_2 . These components, I_{O_2} , I_{H_2O} and I_{CO_2} , in the sensor current are related to the diffusion rates of O_2 , H_2O and CO_2 , respectively. For $H_2O-O_2-N_2$ mixtures, the relations are given by

$$I = I_{\rm O_2} + I_{\rm H_2O}$$
 (A1)

$$I_{\rm O_2} = 4FJ_{\rm O_2} \tag{A2}$$

$$I_{\rm H_2O} = 2F J_{\rm H_2O}$$
 (A3)

where J_{O_2} and J_{H_2O} are the diffusion rates of O_2 and H_2O in the porous coating, respectively. The diffusion rates are represented by

$$J_{O_2} = -D_{O_2}S\left(\frac{C_{O_2,c} - C_{O_2}}{l}\right)$$
(A4)

$$J_{\rm H_{2}O} = -D_{\rm H_{2}O}S\left(\frac{C_{\rm H_{2}O,c} - C_{\rm H_{2}O}}{l}\right) \quad (A5)$$

where $C_{\text{H}_2\text{O},c}$ is H₂O concentration at the cathode. Since the zirconia electrolyte can be assumed to be impervious, therefore,

$$J_{\rm H_{2}O} + J_{\rm H_{2}} = 0 \tag{A6}$$

Here, J_{H_2} is the diffusion rate of H_2 in the porous coating, and represented by

$$J_{\rm H_2} = -D_{\rm H_2} S\left(\frac{C_{\rm H_2,c} - C_{\rm H_2}}{l}\right)$$
(A7)

where $D_{\rm H_2}$ is the diffusion coefficient of H₂, and $C_{\rm H_2,c}$ and $C_{\rm H_2}$ are H₂ concentrations at the cathode and in the ambient gas, respectively.

For $CO_2 - O_2 - N_2$ mixtures, CO_2 dissociates by either

$$\operatorname{CO}_2 \xleftarrow{} \operatorname{CO} + \frac{1}{2}\operatorname{O}_2$$
 (A8)

$$CO_2 \rightleftharpoons C + O_2$$
 (A9)

Therefore, for the gas mixtures, equations corresponding to A1, A3 and A6 are given by

or

$$I = I_{0_2} + I_{CO_2}$$
 (A10)

$$I_{\rm CO_2} = 4F(J_{\rm CO_2} + J_{\rm CO}/2)$$
 (A11)

$$J_{\rm CO_2} + J_{\rm CO} = J_{\rm cd}$$
 (A12)

where J_{CO_2} and J_{CO} are the diffusion rates of CO₂ and CO in the porous coating, respectively, and J_{cd} denotes the deposition rate of carbon at the cathode. These diffusion rates are similarly related to the gas concentrations.

On the other hand, it is hypothesized that gas composition at the cathode is chemically equilibrated due to the catalytic activity of the cathode, since platinum usually has high catalytic activity for the reaction of O_2 with H_2 and CO, in H_2 - O_2 - H_2O and CO- O_2 - CO_2 systems. The gas composition of the equilibrated atmosphere can be calculated in terms of the equilibrium constants of these reactions. Based on this hypothesis and the above equations, the gas composition at the cathode can be numerically calculated.

The calculated concentration of O_2 at the cathode gives the relationship between sensor voltage and sensor current, as expressed by Equation 3. In the calculation for $CO_2-O_2-N_2$ mixtures, the magnitude of the limiting current due to the decomposition of CO_2 by Reaction A9 is expected to be twice the magnitude expressed by Equation 4. However, experimental results indicated considerably smaller magnitude of the sensor current than that yielded by Reaction A9 and even Reaction A8 also. Therefore, the calculated current-voltage curves in which only Reaction A8 is assumed to occur, are shown in Fig. 6.